Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.712

Crystallographic report

Coordination polymers containing Cd(NO₃)₂ and $Cd(H_2O)_2^{2+}$ units bridged by btp ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine)

Ji Young Ryu¹, Jun Yong Lee¹, Sung Jin Hong¹, Hyun Woong Yang¹, Cheal Kim¹*, Youngmee Kim²**, Sung-Jin Kim² and Alan J. Lough³

Received 19 April 2004; Revised 14 May 2004; Accepted 15 May 2004

There are two kinds of coordination polymers in the title compound: one contains Cd(NO₃)₂ units bridged by 2,6-bis(N'-1,2,4-triazolyl)pyridine (btp) ligands and the other contains $Cd(H_2O)_2^{2+}$ bridged by btp ligands. The two coordination polymers are connected through hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; cadmium(II); coordination polymer

COMMENT

Two 2,6-bis(N'-1,2,4-triazolyl)pyridine (btp) ligands bridge Cd(NO₃)₂ units to form one coordination polymer (Fig. 1a) and, separately, the other two btp ligands bridge $Cd(H_2O)_2^{2+}$ units to form a second type of coordination polymer (Fig. 1b). There are two uncoordinated NO₃ anions between the two polymers to balance the charge. The Cd-N distances range from 2.323(5) to 2.363(5) Å. The Cd1-O(NO₃) distances are 2.387(5) and 2.413(7) Å, and the Cd2-O(H₂O) distances are 2.279(4) and 2.331(4) Å. The O-Cd1-O and O-Cd2-O angles are 177.21(19)° and 170.77(17)° respectively. The Cd(NO₃)₂and $Cd(H_2O)_2^{2+}$ -containing polymers are stacked alternately through hydrogen bonds (Fig. 1c).

EXPERIMENTAL

Colorless crystals were isolated under the conditions such that an aqueous solution of Cd(NO₃)₂ was carefully layered by a methanol

Contract/grant sponsor: Korea Research Foundation; Contract/grant number: 2002-070-C00053.

solution of btp.^{1,2} IR (KBr): $\nu(H_2O)$ 3451, $\nu(btp)$ 3102, and $\nu(NO_3^-)$ $1384\ cm^{-1}.$ Anal. Found: C, 31.67; H, 2.30; N, 32.85. Calc. for $C_{36}H_{32}Cd_2N_{32}O_{14}$: C, 31.75; H, 2.37; N, 32.92%. Intensity data were collected at 150 K on a Nonius Kappa-CCD diffractometer using Mo Conected at 150 K of a Normus Rappa-CCD diffraction teres using Mo Kα ($\lambda = 0.71073 \text{ Å}$) radiation for a colorless crystal $0.10 \times 0.16 \times 0.26 \text{ mm}^3$. C₃₆H₃₂Cd₂N₃₂O₁₄, M = 1361.74, monoclinic, Pn, a = 13.3066(2) Å, b = 13.6343(3) Å, c = 13.6510(2) Å, $β = 97.8044(12)^\circ$, $V = 2453.55(7) \text{ Å}^3$, Z = 2, 10150 unique data ($\theta_{\text{max}} = 27.5^\circ$), R = 0.039 (9161 reflections with $I \ge 2\sigma(I)$), wR = 0.097 (all data). The contribution of metric crystal data are consistent (after transformation and a shift of origin) with a higher symmetry space group, and refinement could be achieved employing a disordered model. However, the unambiguous presence of reflections of the type 0k0 for k = 2n + 1supports the present model. Programs used: DENZO-SMN software package, SHEXTL V5.0, ORTEP-3. CCDC deposition number: 236173.

Acknowledgements

This research was supported by the Korea Research Foundation (2002-070-C00053).

REFERENCES

- 1. Yoo SK, Ryu JY, Lee JY, Kim C, Kim SJ, Kim Y. Dalton Trans. 2003;
- 2. Ryu JY, Lee JY, Seo JS, Kim C, Kim Y. Appl. Organometal. Chem. 2003; 17: 805.

¹Department of Fine Chemistry, Seoul National University of Technology, Seoul 139-743, Korea

²Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Korea

³Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

^{*}Correspondence to: Cheal Kim, Department of Fine Chemistry, Seoul National University of Technology, Seoul 139-743, Korea. E-mail: chealkim@snut.ac.kr

^{**}Correspondence to: Youngmee Kim, Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Korea. E-mail: ymeekim@ewha.ac.kr

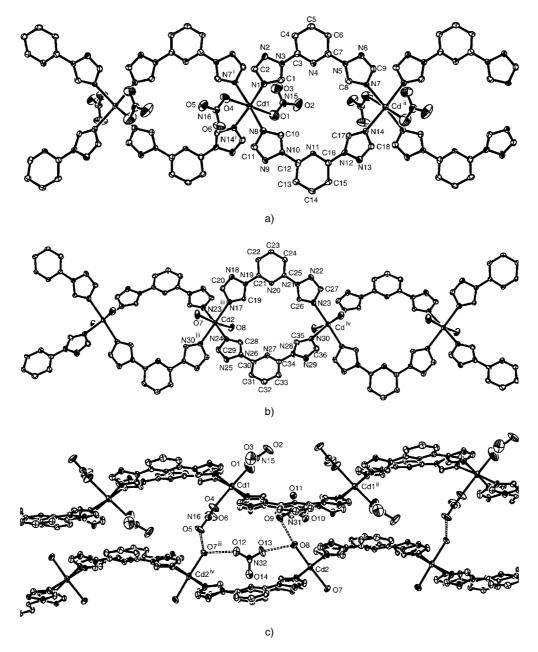


Figure 1. (a) Structure of the coordination polymer containing Cd(NO₃)₂ units bridged by btp ligands with hydrogen atoms omitted for clarity. Selected bond distances and angles: Cd1-N1 2.360(5), Cd1-N8 2.341(6), Cd1-N7ⁱ 2.354(5), Cd1-N14ⁱ 2.349(5), Cd1-O1 2.413(7), Cd1-O4 2.387(5); O1-Cd1-O4 177.21(19)°. (b) Structure of the coordination polymer containing Cd(H₂O)₂₊ units bridged by btp ligands with hydrogen atoms omitted for clarity. Selected bond distances and angles: Cd2-N17 2.363(5), Cd2-N24 2.323(5), Cd2-N23ⁱⁱⁱ 2.327(5), Cd2-N30ⁱⁱⁱⁱ 2.362(6), Cd2-O7 2.331(4), Cd2-O8 2.279(4) Å; O7-Cd2-O8 170.77(17)°. Symmetry operation: (i) $\frac{1}{2} + x$, -y, $-\frac{1}{2} + z$, (ii) $-\frac{1}{2} + x$, -y, $\frac{1}{2} + z$, (iii) $-\frac{1}{2} + x$, 1 - y, $\frac{1}{2} + z$, (iii) $\frac{1}{2} + x$, 1 - y, $-\frac{1}{2} + z$. (c) Structure of the two kinds of coordination polymers associated via hydrogen bonds. Hydrogen bond distances: $O7^{iii}\cdots O5$ 2.821(6), $O7^{iii}\cdots O12$ 2.747(6), O8···O13 2.771(6), O8···O9 3.040(6) Å.